AD-A038 863

STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE TWO RESULTS CONCERNING MULTICOLORING.(U) DEC 76 V CHVATAL, M R GAREY, D S JOHNSON STAN-CS-76-582

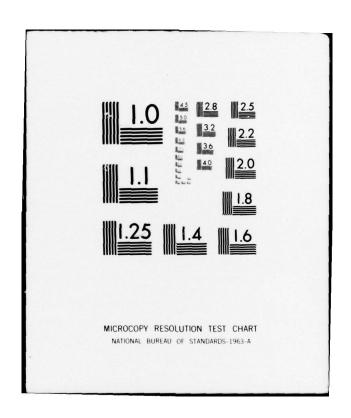
F/G 12/1

UNCLASSIFIED

N00014-76-C-0330

END

DATE FILMED 5-77



TWO RESULTS CONCERNING MULTICOLORING

by

V. Chvatal, M. R. Garey and D. S. Johnson

STAN-CS-76-582 DECEMBER 1976

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

Approved for public release;
Distribution Unit ited



SECURITY CLASSIFICATION OF THIS PAGE (When Date Extered)			
	REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1	1 REPORT NUMBER	2. GOVT ACCESSION NO.	
(14)	STAN-CS-76-582)	(9510	chnical rept.
~	4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
(ax	TWO RESULTS CONCERNING MULTICOLORING.		tachuisal Dacamban 1076
(6)			technical, December 1976
9			6. PERFORMING ORG. REPORT NUMBER STAN-CS-76-582
	7. AUTHOR(s)	- '	8. CONTRACT OR GRANT NUMBER(s)
1			
(10)	Wanter W. D. G. J.		N00014-76-C-0330 130K3
(12	V. Chvatal, M. R. Garey A D. S. Jo	nnson (5	NSF-MCS-72-03752-
_	9. PERFORMING ORGANIZATION NAME AND ADDRESS Stanford University	ota Central III a	AREA & WORK UNIT NUMBERS
	Computer Science Department		
	Stanford, Ca. 94305		
	11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research		12. REPORT DATE
	Department of the Navy	(1)	Dec 1976
	Arlington, VA 22217		13. NUMBER OF PAGES
	14. MONITORING AGENCY NAME & ADDRESS(if differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
	ONR Representative: Philip Surra		Unclassified
	Durand Aeronautics Bldg., Rm. 165		
	Stanford University Stanford, Ca. 94305		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
			L
	Releasable without limitations on dissemination		
	Notoususte without IIIII out of an analysis		
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
	17. DISTRIBUTION STATEMENT (of the abstract entered in block 20, it distributes the		
	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
	analysis of algorithms, combinator	ial mathematics	
	diding 515 of digorround, combine of the medicine of the		
	20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The m-chromatic number $X_{\mathbf{m}}(G)$ of a graph $G = (V, E)$ is the least		
	integer k such that there exists a mapping $f:V \to \{S \subseteq \{1,2,k\}: S = m\}$		
	having the property that $f(u)\cap f(v) = \emptyset$ whenever $\{u,v\} \in E$. This is a		
	generalization of the standard notion of chromatic number and arises in		
	connection with mobile telephone frequency assignments. Answering a question		
	connection with mobile telephone frequency assignments. Answering a question		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

of Lovász, our first result shows that for any $m\geq 1$ and any $\epsilon>0$, there exists a graph G for which $X_{m+1}(G)/X_m(G)>2-\epsilon$. This shows that the known bound of 2 for all m and G is essentially best possible. Our second result shows that the least integer m_0 for which $X_{m_0}(G)/m_0=\lim_{m\to\infty}X_m(G)/m$ can be asymptotically as large as $e^{\sqrt{(n\log n)/2}}$ for some mixed never exceed $e^{(n\log n)/2}$.

TWO RESULTS CONCERNING MULTICOLORING

by

V. Chvátal Stanford University Stanford, California

and

M. R. Garey and D. S. Johnson Bell Laboratories Murray Hill, New Jersey 07974

ABSTRACT

The m-chromatic number $\chi_m(G)$ of a graph G=(V,E) is the least integer k such that there exists a mapping $f:V+\{S\subseteq\{1,2,\ldots,k\}:|S|=m\}$ having the property that $f(u)\cap f(v)=\phi$ whenever $\{u,v\}\in E$. This is a generalization of the standard notion of chromatic number and arises in connection with mobile telephone frequency assignments. Answering a question of Lovász, our first result shows that for any $m\geq 1$ and any $\epsilon>0$, there exists a graph G for which $\chi_{m+1}(G)/\chi_m(G)>2-\epsilon$. This shows that the known bound of 2 for all m and G is essentially best possible. Our second result shows that the least integer m_0 for which $\chi_{m_0}(G)/m_0=1$ m_0 for all m and m can be asymptotically as large as m for some m vertex graphs, though it can never exceed m for some m vertex graphs, though it can never exceed m for m for m for m for some m vertex graphs, though it can never exceed m for m for m for m for some m vertex graphs, though it can never exceed m for m for m for m for m for m for some m vertex graphs, though it can never exceed m for m

This research was supported in part by National Science Foundation grant MCS 72-03752 A03 and by the Office of Naval Reserch contract NOOO14-76-C-0330. Reproduction in whole or in part is permitted for any purpose of the United States Government.

TWO RESULTS CONCERNING MULTICOLORING

by

V. Chvátal Stanford University Stanford, California

and

M. R. Garey and D. S. Johnson Bell Laboratories Murray Hill, New Jersey 07974

I. INTRODUCTION

The following generalization of the standard notion of graph coloring has been of recent interest [1,3,4,6,7,8]. A multicoloring of a graph G = (V,E) is a function f defined on V whose values are sets (of "colors") satisfying $f(u) \cap f(v) = \phi$ whenever $\{u,v\}$ ϵ E. For positive integers k, m, a (k,m)-coloring of G = (V,E) is a multicoloring f of G such that |f(v)| = m for each v ϵ V and $|\bigcup f(v)| = k$. The m-chromatic number $\chi_m(G)$ is the least integer k such that there exists a (k,m)-coloring of G. (This last definition differs from that of [6,7] by a factor of m.) Notice that for m = 1 these definitions correspond to the usual graph coloring notions. The purpose of this note is to resolve two questions about multicoloring conveyed to us by P. Erdös [2].

The first question deals with the relationship between $\chi_m(G)$ and $\chi_{m+1}(G)$. It is not difficult to see that

 $\chi_{m+1}(G) \leq \chi_m(G) + \chi_1(G) \leq 2 \cdot \chi_m(G)$

with equality possible in the right-hand inequality only for m = 1. Lovász asked [2] whether, for each value of m, there exist graphs G such that $\chi_{m+1}(G) > (2-\epsilon)\chi_m(G)$. We shall answer this question in the affirmative.

The graphs we shall use are defined as follows: for positive integers $n\geq 2m$, the graph G^n_m has vertex set consisting of all m-element subsets of $\{1,2,\ldots,n\}$ and has an edge between two such vertices exactly when their intersection is empty. It is easy to see that $\chi_m \left(G^n_m\right) \leq n$ merely by considering the multicoloring provided by the definition of G^n_m and, in fact, it is proved in [7,8] that $\chi_m \left(G^n_m\right) = n$. Thus, to answer the question of Lovász, it suffices to prove the following theorem:

Theorem 1. For each $m \ge 2$, there exists a constant c such that for all sufficiently large n

$$\chi_{m+1}(G_m^n) \ge 2n - c.$$

In order to prove Theorem 1, we require the following lemma, which is an immediate consequence of a special case of Theorem 3 in [5].

<u>Lemma 1</u>. For fixed $m \ge 2$ and n sufficiently large, there exists a constant a_0 such that the number of m-element subsets of $\{1,2,\ldots,n\}$ which can be chosen so that no two are disjoint but there is no element common to all is at most a_0^{m-2} .

<u>Proof of Theorem 1</u>. Fix m. We merely need to show that, for all sufficiently large n,

$$\chi_{m+1}(G_m^n) - \chi_{m+1}(G_m^{n-1}) \ge 2$$

and the result will follow by induction. So suppose we have a (k,m+1)-coloring of G_m^n such that $k=\chi_{m+1}\left(G_m^n\right)$, where n is any integer sufficiently large that the conclusion of Lemma 1 holds and such that $\binom{n-1}{m-1} > ma_0 n^{m-2}$, where a_0 is the constant of Lemma 1. We first claim that there must be at least n+1 colors which each appear on more than $a_0 n^{m-2}$ vertices.

Suppose there are n or fewer colors which each appear on more than $a_0 n^{m-2}$ vertices. By Lemma 1, each such color can appear on at most $\binom{n-1}{m-1} > a_0 n^{m-2}$ vertices since they must all share a common element. Thus, since each of the $\binom{n}{m}$ vertices receives exactly m+1 colors, we must have

$$(m+1) \quad {n \choose m} \le n \quad {n-1 \choose m-1} + (k-n)a_0 n^{m-2}$$

$$\le m \quad {n \choose m} + (k-n)a_0 n^{m-2}$$

or, rewriting,

$$\binom{n}{m} \leq (k-n)a_0 n^{m-2}$$

Since

$$k = \chi_{m+1} (G_m^n) \le \chi_m (G_m^n) + \chi (G_m^n)$$

$$\le 2\chi_m (G_m^n) = 2n$$

it follows that we must have

$$\binom{n}{m} \leq a_0 n^{m-1}$$

However this is a contradiction, since n was chosen sufficiently large that $\binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1} > \frac{n}{m} \max_{0} n^{m-2} = a_{0} n^{m-1}$, and the claim follows.

Thus there are at least n+l colors which each appear on more than $a_0 n^{m-2}$ vertices. The set of vertices on which any color i appears must form a collection of pairwise-intersecting m-element subsets of $\{1,2,\ldots,n\}$, by definition of G_m^n . Thus, by Lemma 1, whenever color i appears on more than $a_0 n^{m-2}$ vertices, all those vertices must contain some common element e_i . Since there are more than n such colors, we must have $e_i = e_j$ for some i and j. If we delete from G_m^n all the vertices containing $e_i = e_j$, we obtain a copy of G_m^{n-1} and a (k-2,m+1)-coloring of it, since colors i and j have disappeared. Therefore

$$\chi_{m+1} (G_m^{n-1}) \le k-2 = \chi_{m+1} (G_m^n) - 2$$

and the theorem is proved.

The second question involves what we call the ultimate multichromatic number $\chi^*(G)$ defined by

$$\chi^*(G) = \inf_{m} \chi_m(G)/m.$$

It is proved in [1,7] that the value of $\chi^*(G)$ is always achieved for some finite m. One easy way to see this is to formulate the problem of determining $\chi^*(G)$ as a linear programming problem (as done in [4]): Let v_1, v_2, \ldots, v_n be an ordering of the vertices of G and let S_1, S_2, \ldots, S_ℓ be an ordering of the independent sets of G. Define x_{ij} to be 1 whenever $v_i \in S_j$ and 0 otherwise. Then the value of $\chi^*(G)$ is given by

$$\chi^*(G) = \min \sum_{j=1}^{\ell} r_j$$

subject to: $r_j \ge 0$, $1 \le j \le l$;

$$\sum_{j=1}^{\ell} x_{ij}r_j = 1, \quad 1 \leq i \leq n.$$

One can show easily, using Hadamard's Theorem, that no basis matrix for this problem can have determinant exceeding $n^{n/2}$ and this is an upper bound on the value of m required.

This upper bound however seems ridiculously large. Erdös asked [2] (as did the authors, independently) whether $\chi^*(G)$ could always be achieved for an m not exceeding the number of vertices of G. We answer this in the negative, constructing graphs for which extremely large values of m are necessary to achieve $\chi^*(G)$.

Let C_p denote the graph which is a cycle on p vertices. The join G_1+G_2 of two graphs G_1 and G_2 , having disjoint vertex sets, consists of all edges and vertices in the two given graphs along with all edges joining a vertex from G_1 to a vertex from G_2 . We use the following two lemmas in our construction:

Lemma 2. [4,7] For all integers $p \ge 1$,

$$\chi^*(C_{2p+1}) = 2 + (1/p).$$

Lemma 3. [7] For all graphs G_1 and G_2 ,

$$\chi^*(G_1 + G_2) \; = \; \chi^*(G_1) \; + \; \chi^*(G_2).$$

Let p_i denote the ith prime and define the graph G(i) to be $C_{2p_1+1} + C_{2p_2+1} + \cdots + C_{2p_i+1}$. The number of vertices n of G(i) is given by

$$n = i + 2 \sum_{j=1}^{i} p_{j}$$
.

Applying Lemmas 2 and 3, we obtain

$$\chi^*(G(1)) = 2i + \sum_{j=1}^{1} (1/p_j)$$
.

Since $\chi_m(G(i))$ must always be an integer, it follows that the least value of m for which $\chi^*(G(i)) = \chi_m(G(i))/m$ can be no less that $\prod_{j=1}^{n} p_j$ (and in fact that value of m will work). Using the Prime Number Theorem and expressing this lower bound in

terms of n, we obtain the asymptotic lower bound of

 $e^{\sqrt{(n\log n)/2}}$.

Thus, though this is still quite far from the upper bound of

 $n^{n/2} = e^{(n\log n)/2}$

we see that extremely large values of m $\underline{\text{can}}$ be required in order to achieve $\chi^*(G)$.

REFERENCES

- [1] F. H. Clarke and R. E. Jamison, "Multicolorings, Measures and Games on Graphs", Discrete Math., 14 (1976), 241-245.
- [2] P. Erdös, personal communication.
- [3] M. R. Garey and D. S. Johnson, "The Complexity of Near-Optimal Graph Coloring", J. ACM 23 (1976), 43-49.
- [4] E. N. Gilbert, "Mobile Radio Frequency Assignments", unpublished technical memorandum, 1972.
- [5] A. J. W. Hilton and E. C. Milner, "Some Intersection Theorems for Systems of Finite Sets", Quart. J. of Math. (Oxford second series), 18 (1967), No. 72, 369-384.
- [6] A. J. W. Hilton, R. Rado, and S. H. Scott, "A (<5)-color theorem for Planar Graphs, Bull. London Math. Soc. 5 (1973), 302-306.
- [7] S. H. Scott, Multiple Node Colorings of Finite Graphs, Ph.D. thesis, Dept. of Mathematics, University of Reading (England), 1975.
- [8] S. Stahl, "n-Tuple Colorings and Associated Graphs", J. Combinatorial Theory-Series B, 20 (1976), 185-203.